Reconstruction of acetabular defects greater than Paprosky type 3B: the importance of functional imaging. BMC Musculoskelet Disord 22, 207 (2021).

Reconstruction of acetabular defects greater than Paprosky type 3B: the importance of functional imaging

Di Laura, A., Henckel, J., Dal Gal, E. et al.
Hip

Background

3D Surgical planning has become a key tool in complex hip revision surgery. The restoration of centre of rotation (CoR) of the hips and leg length (LL) are key factors in achieving good clinical outcome. Pelvic imaging is the gold standard for planning and assessment of LL. We aimed to better understand if 3D planning is effective at equalising LL when large acetabular defects are present.

Materials and methods

This was a prospective case study of 25 patients. We report the analysis of pre-operative LL status and planned LL restoration measured on CT, in relation to the achieved LL measured post-operatively in functional, weight bearing position. Our primary objective was the assessment of restoration of CoR as well as the anatomical and functional LL using biplanar full-length standing low-dose radiographs; our secondary objective was to evaluate the clinical outcome.

Results

Pre-operative intra-pelvic discrepancy between right and left leg was a mean of 28 mm (SD 17.99, min = 3, max = 60 mm). Post-operatively, the difference between right and left vertical femoral offset (VFO), or CoR discrepancy, was of 7.4 mm on average, significantly different from the functional LL discrepancy (median = 15 mm), p = 0.0024. Anatomical LLD was a median of 15 mm. In one case there was transient foot drop, one dislocation occurred 6 months post-operatively and was treated by closed reduction, none of the patients had had revision surgery at the time of writing. Mean oxford hip score at latest follow up was 32.1/48.

Discussion

This is the first study to investigate limb length discrepancy in functional position after reconstruction of large acetabular defects. We observed that VFO is not an optimal surrogate for LL when there is significant bone loss leading to length inequality, fixed flexion of the knee and abduction deformity.

Conclusions

Although challenging, LLD and gait abnormalities can be greatly improved with the aid of an accurate surgical planning. Surgeons and engineers should consider the integration of EOS imaging in surgical planning of reconstruction of large acetabular defects.


Download article