Metallographic Evaluation of Hip Joint Implants wear and Electrochemical Implants Potential. HIP International. 2014;24(6):604-609.

Metallographic Evaluation of Hip Joint Implants wear and Electrochemical Implants Potential

Kmieć K, Sibinski M, Synder M, Drobniewski M, Kozłowski P.
Hip

We performed metallographic evaluations of implants, removed during revision hip arthroplasty. The implants were evaluated for electrochemical potentials and the presence of wear products on the implants surface. A total of 50 patients (50 hips) underwent revision hip arthroplasty during the years 2007-2009 for aseptic loosening. The mean follow-up from primary hip replacement to revision was 10.1 years (from six months to 17 years). All hip joint implants removed during the revision arthroplasty were submitted to metallographic analysis and all heads were submitted to analysis under a scanning microscope. All polyethylene (PE) cups and inserts showed numerous features of wear (friction wear, plastic deformation and creeping, fatigue wear and degradation), six PE cups were broken. In six ceramic cups, only friction wear features were found; one of them was mechanically broken. In all heads articulating on PE not one had any mechanical damage. Heads of ceramic implants in ceramic-ceramic articulation undergo abrasive wear. None of the studied stems (cemented or uncemented) revealed any features of wear. Areas of titanium crystals (formed by electrolytic sedimentation of metals) were macroscopically identified on the sliding surface of six heads that was confirmed by chemical composition and scanning microscope.

 

In the course of prosthesis use, wear products are produced and transferred onto the sliding surfaces of implant heads and cups via ways other than purely mechanical contact. It has been confirmed that metals used for implant construction, make galvanic cells with different electrochemical potentials.


Link to article