The Journal of Arthroplasty, Volume 34, Issue 10, 2242 - 2247

Machine Learning Algorithms Can Use Wearable Sensor Data to Accurately Predict Six-Week Patient-Reported Outcome Scores Following Joint Replacement in a Prospective Trial

Bini, Stefano A. et al.
Hip Knee


Tracking patient-generated health data (PGHD) following total joint arthroplasty (TJA) may enable data-driven early intervention to improve clinical results. We aim to demonstrate the feasibility of combining machine learning (ML) with PGHD in TJA to predict patient-reported outcome measures (PROMs).


Twenty-two TJA patients were recruited for this pilot study. Three activity trackers collected 35 features from 4 weeks before to 6 weeks following surgery. PROMs were collected at both endpoints (Hip and Knee Disability and Osteoarthritis Outcome Score, Knee Osteoarthritis Outcome Score, and Veterans RAND 12-Item Health Survey Physical Component Score). We used ML to identify features with the highest correlation with PROMs. The algorithm trained on a subset of patients and used 3 feature sets (A, B, and C) to group the rest into one of the 3 PROM clusters.


Fifteen patients completed the study and collected 3 million data points. Three sets of features with the highest R 2 values relative to PROMs were selected (A, B and C). Data collected through the 11th day had the highest predictive value. The ML algorithm grouped patients into 3 clusters predictive of 6-week PROM results, yielding total sum of squares values ranging from 3.86 (A) to 1.86 (C).


This small but critical proof-of-concept study demonstrates that ML can be used in combination with PGHD to predict 6-week PROM data as early as 11 days following TJA surgery. Further study is needed to confirm these findings and their clinical value.

Download article